改良路床材とFe石灰処理土の比較表

	改良路床材	Fe 石灰処理土
分類	置換工法	サンドイッチ舗装工法(Fe石灰工法)
材料概要	A 材料: 砕石微粉末に生石灰を 5%程度混合した改良土を、切	良質土(まさ土・シラス・土丹など)を用土とし、Fe 石灰(消
	込ズリ(40~0mm)に 20%混合した材料。(実質石灰量 1.0%	石灰 75%+酸化鉄 25%)を 6.5%~10.0%混合した材料。
	程度)	
	B 材料:建設発生土(40mm 以下) と切込ズリ(40~0mm)	
	の混合土に、生石灰を 0.5%程度混合した材料。	
材料の性質	砕石微粉末(高含水副産物)や建設発生土(建設工事に伴い	山土であるまさ土は性状変化が少なく、いずれの現場におい
	副次的に発生する土砂) が母材であることから、現場ごとに	ても均一な材料搬入が可能。高強度で安定した支持基盤を形
	性状が変化し均一性に欠ける。	成することができる。
		水中での強度も安定しており耐水性に優れている。
強度特性	生石灰と土の反応原理は、水和反応およびポゾラン反応によ	消石灰と酸化鉄粉の反応が主であることから、ポゾラン反応
	って強度が増加するもので、その反応性は 1 ヶ月がピークと	と鉄の形態変化によって強度が増加する。その反応性は3年
	なる。しかし、生石灰の添加量は 0.5~1.0%程度であること	以上経過しても増加し続ける。
	から、強度特性としては、生石灰の改良効果よりも締固め効	また、通常の半分の締固めエネルギーで強度確認をしており、
	果に依存し、長期間の強度増加は期待できない。	軽転圧での施工が可能である。
品質管理	特に記述なし。	現場ごとに搬入された材料の試料採取を行い、品質管理試験
		を実施。試験結果の提出を義務づけている。
現場管理	特に記述なし。	現場ごとに施工状況などをFe石灰技術研究所の技術者が確認
		する (施工業者への指導など)。
設計方法	CBR≥100%以上の強度を有する材料と記載されているが、	サンドイッチ舗装工法に位置づけられることから、CBR=
	TA法での路床材強度の上限値はCBR=20%と規定されている	100%として設計を行う。「地点のCBR」の算定方法にもとづ
	ことから、CBR≦20%として設計を行う必要がある。	き改良厚さ(過去の施工実績などから確立されたFe石灰処理
	(砕石系材料など、CBR が 100%を超える材料であっても路	厚の簡便表)を決定するが、弾性計算による検算を行い照査
	床に適用する場合は20%を上限としなければならない。)	する(参考資料)。

○交通区分 N₅, 区間の CBR=1.0%, 目標設計 CBR8 の例

置換工法 安定処理工法 サンドイッチ舗装工法 (Fe石灰工法) 10 アスコン 10 アスコン 10 アスコン 15 15 粒調砕石 15 粒調砕石 粒調砕石 15 クラッシャラン 15 クラッシャラン 15 クラッシャラン → 設計CBR8 →設計CBR8 拘束層 平均弹性係数 安定処理土 30 78,4MPa 置換材 CBR≥100% 65 *CBR≥20%* 修正CBR20%以上 区間CBR=1.0% (弾性計算) 区間CBR=1.0% (TA法) 区間CBR=1.0% (TA法) 主な土質安定材 主な置換材料 主な拘束材料 まさま・ • 石灰系 • 山ズリ ・ソイルセメント • 切込砕石 ・セメント系 ・シラス • Fe石灰処理土 · GSL路床材 石膏 · HC路床材